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with contact discontinuities that separate species of differ-
ent thermodynamic properties. Such problems as numeri-Existing shock-capturing schemes have difficulties with multispe-

cies computations, creating nonphysical glitches at species inter- cal oscillations and computational inaccuracies around
faces. We attribute these glitches to inconsistencies in the equation contact discontinuities have been recognized and discussed
of state in cells containing several species. Our remedy is to define in [1, 14, 17, and 25]. To circumvent the problem, Karni
mixtures within a grid cell as a collection of species which can

[14] proposes to solve the equations in terms of primitivepossess distinct temperatures. This formulation requires solving an
variables. With this approach, pressure is solved directlyadditional set of species energy equations. Computational results

show that the glitches have been eliminated. For chemically reacting instead of computed from the conservative variables;
flow simulations, existing splitting methods often generate non- hence, oscillations in the pressure field can be eliminated.
physical waves at stiff reaction fronts. We show that this numerical The drawback is that the resulting scheme is nonconserva-
phenomenon is due to the mixture model that overestimates the

tive; it can have problems in predicting shock speeds cor-reaction temperature. This is avoided by introducing an enforce-
rectly. Using the high-order conservative scheme of [24],ment on the reaction temperature that depends on the temperatures

of each species. We demonstrate that the method computes detona- Ton et al. [25] show that the contact discontinuity is better
tion waves with time steps and grid sizes much larger than would resolved as the order of accuracy is increased, but the
be allowed to resolve reaction zones. Q 1996 Academic Press, Inc. problem is not completely eliminated. Recently, Karni [15]

presents a method that solves the pressure evolution equa-
tion in addition to the Euler and species conservation equa-1. INTRODUCTION
tions. This approach requires detection of the contact dis-
continuity location which is not easily accomplished forShock-capturing methods that solve the Euler equations
flows with three or more components or for chemicallyfor single component compressible gases are well devel-
reacting flows where species are created or destroyed. An-oped. However, when extending these methods to multi-
other drawback is that the method is not conservative.component nonequilibrium flows, a number of numerical

In this study we show that the aforementioned errorsdifficulties need to be resolved. This paper addresses two
are actually due to a thermodynamic inconsistency in theopen problems that have attracted considerable attention
equation of state in cells containing several species; this isin the past several years. The first problem is the computa-
not a result of the numerical scheme nor numerical diffu-tional inaccuracies seen near contact surfaces separating
sion. The problem lies in the application of a model whichthermodynamically distinct species. The second problem
assumes that all species are perfectly mixed and have theis the nonphysical waves generated by stiff reaction fronts.
same temperature within a grid cell. This assumption isThey are described in the following.
inconsistent with the possibility that contact surfaces mightA popular approach in simulating nonreactive, multi-
exist within a cell. For flows in which species can havecomponent flows of compressible gases is to solve conser-
distinct thermodynamic properties, this idealization willvation laws for the mixture coupled with mass conservation
generate numerical spikes near contact surfaces. In thisequations for each species. In addition, an equation of state
paper it is shown that, in order to eliminate this numericaland an expression for the ratio of specific heats of the
artifact, each species needs to retain its own propertiesmixture expressed in terms of the conserved variables are
especially its temperature. Hence, within a cell, if mixturesgiven to form a closed system of equations. When typical
are defined as a collection of species which possess distinctEuler schemes are extended to solve this sytem, these
temperatures, contact surfaces can exist in a cell. This ismethods often encounter numerical difficulties associated
sufficient to enforce thermodynamic consistency and does
not require computation of the contact surface location to1 Present address: The Aerospace Corporation, P.O. Box 92957, Los

Angeles, CA 9009-2957. obtain accurate results. In order to obtain a thermodynami-
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cally consistent model for the ratio of specific heats of the
mixture, we extend the number of variables by including
a set of species energy equations, in addition to the equa-
tions for species density, and for density, momentum, and
energy of the mixture. Even with the added equations, a
Godunov-type method will only require a Riemann prob-
lem to be solved once for the mixture of the fluid, i.e., not
for each species, at each cell interface. Colella et al. [7] FIG. 1. Schematic of mixing models.

present a volume-of-fluid type method which solves a set of
thermodynamically consistent equations including volume
fractions and energies for each species; the scheme uses a 2. THERMODYNAMIC CONSISTENCY AND
predictor–corrector algorithm. Unlike in [7], the present NUMERICAL SPIKES
approach eliminates the need to solve the evolution equa-

In this section we shall analyze the numerical difficultiestions for volume fractions of each species. Implementations
associated with contact discontinuities separating fluidsof the thermodynamic consistency into existing conserva-
with different thermodynamic properties. First we derivetive, shock-capturing schemes are shown.
a model for the ratio of specific heats of a thermally perfectModeling of reactive gas dynamics frequently is ham-
gas mixture; we deduce next a model for the ratio of specificpered by numerical difficulties arising from the stiffness of
heats of a calorically perfect gas mixture. We then show thesource terms representing the chemistry. It is possible to
errors resulted from using inconsistent models to simulatederive methods that are stable for stiff problems, but other
flows that are not in thermal equilibrium.numerical difficulties are observed. Stiffness problems can

Consider a control volume, such as a grid cell, that islead to stable solutions yielding nonphysical waves with
divided into subregions containing distinct species; eachincorrect wave speeds and strengths. These nonphysical
species can have a different temperature, as shown in Fig.phenomena have been observed numerically in [6] and
1a. The corresponding numerical representation is a mix-[18]. Colella et al. [6] apply splitting methods in which the
ture in which all species are perfectly mixed and have thefluid dynamics and chemistry are handled in separate steps.
same temperature, see Fig. 1b. It will be shown later inThey observe that on coarse grids the numerical solution is
this section that this discrete model for the mixture willincorrect. In [18] both splitting methods and MacCormack-
result in a thermodynamically inconsistent equation oftype predictor–corrector methods with flux limiters are
state. Here, for numerical purposes, we define mixtures asused, and the solutions exhibit similar behavior. LeVeque
a collection of species which possess distinct temperatures,and Yee [18] show that this type of difficulty is due to the
see Fig. 1c. Each species is required to retain its own tem-nonequilibrium points at the shock front introduced by
perature. The total energy of species i per until controlconservative shock-capturing schemes. The temperature at
volume is defined asthese points can prematurely ignite the chemical reaction.

Engquist and Sjogreen [9] introduce a simple fix to this
stiffness problem by preventing these nonequilibrium

riEi 5 rihi 2 Pi 1
1
2

riu ? u, (1)
points from triggering the reaction. However, in this paper
we will show that this difficulty is due to the mixture model
that overestimates the reaction temperature. This stiffness where ri , Ei , hi , and Pi denote respectively the density of
problem can be eliminated with an enforcement on the mass, total energy per unit mass, static enthalpy, and partial
reaction temperature that depends on the temperatures of pressure of species i; u is the velocity of the mixture. All
each species. species are assumed to have the same velocity as the mix-

In Section 2 we present various models for the ratio ture. Diffusion effects are neglected in this study. The
of specific heats of the mixture, both thermodynamically specific enthalpy of species i at temperature Ti is given by
consistent and inconsistent. We illustrate the errors that
result from the inconsistent models often used in practice. hi 5 h0

f,i 1 ETi

0
cp,i dT (2)

The set of equations to be solved numerically is derived
in Section 3. Implementations of the approach into existing

where h0
f,i is the specific heat of formation of species i atconservative, shock-capturing schemes are presented in

T 5 0, and cp,i is the specific heat at constant pressure. WeSection 4. In Section 5 we present numerical results for
assume all species satisfy the ideal gas lawseveral one- and two-dimensional problems. Comparisons

with other methods are shown. High order (more than
two) accurate solutions are also provided. A summary is Pi 5

riTiRu

Wi
, (3)

given in the last section.
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where Wi represents the molecular weight of species i and 16, 20, 26, 27] and many others. Substituting the ideal gas
law, Eq. (9) becomesRu is the universal gas constant. Substituting the expres-

sions for enthalpy and ideal gas law, Eq. (1) can be writ-
ten as

c 5 1 1

Ons

i51

Yi

Wi

Ons

i51

Yi

Wi(ci 2 1)

,
riEi 5

Pi

ĉi 2 1
1

1
2

riu ? u 1 rih0
f,i , (4)

where ĉi is defined as
where Yi represents the mass fraction of species i. Introduc-
ing ci 5 cp,i/cv,i leads to the equation

ĉi 5
ĉp,i

ĉp,i 2
Ru

Wi

(5)

c 5
cp

cv
(10)

with
where cp 5 ons

i51 Yicp,i and cv 5 ons
i51 Yicv,i are the mixture

specific heats at constant pressure and volume, respec-
ĉp,i 5

1
Ti

ETi

0
cp,i dT. (6) tively. This equation for c is valid only at a point in space

where we can safely assume that all species coexist at
the same temperature, whereas, for numerical simulationSumming (4) over all species lead to the overall energy
purposes, the space is divided into grid cells occupyingequation for the mixture
finite volumes. The model breaks down if a contact surface
separating species with different temperatures is located
in the interior of a cell.rE 5 Ons

i51

Pi

ĉi 2 1
1

1
2

ru ? u 1 Ons

i51
rih0

f,i . (7)
Another model for c is introduced in [2] in an attempt

to keep the pressure in equilibrium across contact disconti-
Here r 5 ons

i51 ri represents the density of mass of the nuities. It has the form
mixture, and ns denotes the number of species. Thus, if the
total energy per unit volume for the mixture is expressed as

c 5 1 1
1

Ons

i51

Yi

ci 2 1

. (11)

rE 5
P

c 2 1
1

1
2

ru ? u 1 Ons

i51
rih0

f,i , (8)

It can be shown that this is a special case of (9) when the
with P 5 ons

i51 Pi , then the mixture ratio of specific heats
ratio of Ti/Wi is assumed constant. This implies that the

must satisfy
model of c in (11) guarantees the pressure will remain
in equilibrium only for contact discontinuities separating
species of the same densities.c 5 1 1

P

Ons

i51

Pi

ĉi 2 1

. (9)
The restrictions imposed by the models in (10) and (11)

are impractical when simulating realistic multicomponent
flows. Using these models for such flows often causes nu-
merical spikes to be generated around contact discontinu-For calorically perfect gas, we have ĉp,i 5 cp,i and ĉi 5 ci .

Hence, for a thermodynamically consistent system, Eq. ities separating species with different thermodynamic
properties. Even for flows with contact discontinuities sat-(9) must hold. The partial pressures, Pi , for each species

are hence required to be known at each point. They cannot isfying the imposed conditions initially, passage or interac-
tion of shocks or rarefaction waves will make both modelsbe computed from schemes that only provide mixture prop-

erties and species densities. The method that we shall pre- invalid. In the following example, the generation of numer-
ical spikes when using either (10) or (11) is illustrated. Itsent in the following sections is developed solely to satisfy

(9). Models for c that are widely used in practice are in will be shown that when a contact discontinuity separating
two species of different temperature and ratio of specificfact special cases of (9) under simplifying assumptions.

Two popular forms are analyzed in the following. heats is convected across the interior of a cell, a conserva-
tive method which only solves for mixture properties andIf all species within a grid cell are assumed to coexist at

the same temperature, then Eq. (9) is reduced to a form species densities generates numerical spikes in the pres-
sure; subsequently this will contaminate the flow field. Inthat is used extensively in the literature, e.g. in [1, 8, 15,
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Hence, from (9), we have

c 5 1.5,

and pressure and velocity remain unity. Now, if either
(10) or (11) is used, the value of c are 1.583 and 1.462,
respectively. The corresponding values for pressure in cell
j, calculated from

FIG. 2. Schematic of convection of a contact discontinuity.

p 5 (c 2 1) SrE 2
1
2

ru2D ,

the example, it will be also demonstrated that the source
are 1.165 and 0.923, respectively. Hence, either an over-of this error is due to neither numerical diffusion nor the
shoot or an undershoot in the pressure is generated. Thisnumerical cheme, but instead to an invalid model for the
type of numerical spike always occurs when an inconsistentratio of specific heats of the mixture.
model for c is used along with any conservative scheme.

EXAMPLE. Let two adjacent cells be filled with air (spe-
cies 1) and helium (species 2), respectively, as shown in 3. GOVERNING EQUATIONS
Fig. 2. Their properties are

The standard set of governing equations for multicompo-
c1 5 1.4, W1 5 28.97 g/mol, cp,1 5 1004e7 erg/gK, nent, inviscid, compressible, reactive gas with no heat con-

duction consists of the Euler equations for the gas mixture
and mass conservation equations for each species. Thec2 5

5
3

, W2 5 4 g/mol, cp,2 5 5.196e7 erg/gK.
Euler equations are the conservation laws for mass, mo-
mentum, and energy. We shall express these equations in

The non-dimensional conservative values in cell ( j 2 1) are their conservative form, since this is essential in order to
correctly compute (numerically) the strength and speed of

r1 5 1, r1E1 5 3; discontinuities. The equations are as follows:

the corresponding values in cell j are rt 1 = ? (ru) 5 0, (12)

(ru)t 1 = ? (ru ^ u) 1 =P 5 0, (13)r2 5 .5, r2E2 5 1.75.
(rE)t 1 = ? ((rE 1 P)u) 5 0, (14)

Both cells have unit pressure and velocity. The ratio of (rYi)t 1 = ? (rYiu) 5 ġi 1 # i # (ns 2 1), (15)
the temperatures, T1/T2 , is 3.621. At a later time, t 5
Dx/2, the contact discontinuity is convected from the cell

where ġi is the mass production/destruction rate of speciesinterface to the center of cell j. Hence, the new conservative
i due to chemical reactions. To close the system, an equa-values of cell j are just the average values of cell j and
tion of state, such as (8), and an algebraic expression for( j 2 1) from the previous time. We have
c, usually (10), are given.

In order to use the consistent form of c given in (9),
r 5 0.75, r1 5 .5, r2 5 .25, additional equations are needed to determine the partial

pressures for each species. The approach that we shall takerE 5 2.375, r1E1 5 1.5, r2E2 5 0.875.
is to include a set of partial differential equations written
for the total energy per unit volume for each species i forThe partial pressures can be calculated as
1 # i # (ns 2 1). Then the partial pressures for each species
are calculated from (4). The remainder of this section is
devoted to the derivation of the species energy equations.p1 (c1 2 1) Sr1E1 2

1
2

r1u2D5 0.5,
A similar derivation is presented in [7]. In [7], it is assumed
that in a cell all species are in pressure equilibrium with

and similarly one another, and all species have the same velocity as the
mixture. These assumptions are also used here.

Using the continuity and momentum equations, the totalp2 5 0.5.
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energy equation can be converted to the specific internal species coexist independently, each obeying the laws of
dynamics and thermodynamics. Hence, each grid cell canenergy (e) equation as
be considered to be divided into subregions containing
distinct species. Then P̃i , which is defined as P̃i 5 Pi/fi , isD

Dt
(e) 2

P
r2

D
Dt

(r) 5 0, (16) the pressure of the subregion containing species i. Since
pressure remains continuous across surfaces, and each sub-
region of a cell can be assumed to be in pressure equilib-with
rium with each other, then we have

D
Dt

( ) 5
­( )
­t

1 u ? =( )
P̃i 5 P.

representing the material derivative. Let fi denote the vol- Thus, Eq. (22) becomes
ume fraction of species i. By replacing P with Pi/fi and r
with ri/fi , then the corresponding equation describing the
specific internal energy for species i is 1

fi

D
Dt

( fi) 1
1

ciP
D
Dt

(P) 1 = ? u 5 0. (23)

D
Dt

(ei) 2
Pi fi

r2
i

D
Dt Sri

fi
D5 0. (17) Summing the above equation over all species, with ons

i51

fi 5 1, leads to the following equation for the pressure of
the mixture:Substituting the momentum and species conservation

equations, the following equation is obtained:
D
Dt

(P) 1
P2

Ons

i51

Pi

ci

= ? u 5 0. (24)­(riEi)
­t

1 = ? (riEiu) 1 Yiu ? =P 1 Pi= ? u 1
Pi

fi

D
Dt

( fi) 5 0.

(18)

We may now transform (18) by using (23) and (24) toUnlike [7], we want to eliminate the dependent variable
obtain a differential equation expressing the species energyfi from the above equation. Thus, we seek an expression
independent of fi:for (1/fi)(D/Dt)( fi). From the definition of internal energy,

ei 5 hi 2 Pi/ri , we also have
­riEi

­t
1 = ? (riEiu) 1 Yiu ? =P 1

PiP

ci Ons

i51

Pi

ci

= ? u 5 0. (25)
D
Dt

(ei) 5
D
Dt

(hi) 2
1
ri

D
Dt

(Pi) 1
Pi

r2
i

D
Dt

(ri). (19)

If each species satisfies the ideal gas law, then we have For a single fluid, this equation becomes (14). Thus, for
an ns-component gas mixture, the set of equations that
needs to be discretized are (12) through (14), and (15) andD

Dt
(hi) 5 cp,i

D
Dt

(Ti) (20)
(25) for 1 # i # (ns 2 1). This comprises (2ns 1 d) number
of differential equations where d is the number of space di-

with cp,i depending only on temperature. Substituting the mensions.
above equation and the ideal gas law into (19), we have In the next section, when we present the implementation

of this equation into high-order schemes, characteristic
variables (defined in the next section) are needed. Thus,D

Dt
(ei) 5

1
(ci 2 1)ri

D
Dt

(Pi) 2
Pi

(ci 2 1)r2
i

D
Dt

(ri). (21)
we derive the Jacobian matrices and their eigenvalues and
eigenvectors for the latter use. For the derivation, deriva-
tives of pressure with respect to the flow variables areCombining the above equation with (17), and also using
needed; thus, derivatives of c are also involved. This wouldthe species conservation equation, we obtain
make the matrices very complicated. To circumvent this,
we include the pressure equation in the system. The aug-1

fi

D
Dt

( fi) 1
1

(ci 2 1)Pi

D
Dt

(Pi) 1
ci

(ci 2 1)
= ? u 5 0. (22) mented system, in two dimensions, can be written as

Vt 1 AVx 1 BVy 5 0, (26)In deriving the conservation laws, it is presumed that all
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TABLE I

Matrix L (Right Eigenvectors of Jacobian Matrix M)

1 1 0 0 0 ... 0 0 ... 0 1
u 2 k1ĉ u k2 0 0 ... 0 0 ... 0 u 1 k1ĉ
v 2 k2ĉ v 2k1 0 0 ... 0 0 ... 0 v 1 k2ĉ

H 2 ûĉ v̂ 1 0 ... 0 0 ... 0 H 1 ûĉ
u2 1 v2

2
Y1 Y1 0 0 1 ... 0 0 ... 0 Y1

... ... ... ... ... ... ... ... ... ... ...
Yns21 Yns21 0 0 0 ... 1 0 ... 0 Yns21

Ĥ1 2 Y1ûĉ 0 0 0 0 ... 0 1 ... 0 Ĥ1 1 Y1ûĉ
... ... ... ... ... ... ... ... ... ... ...

Ĥns21 2 Yns21ûĉ 0 0 0 0 ... 0 0 ... 1 Ĥns21 1 Yns21ûĉ
ĉ2 0 0 0 0 ... 0 0 ... 0 ĉ2

where the vector V represents 4. NUMERICAL METHOD

Equations (12)–(15) form a well known system of hyper-V 5 (r, ru, rv, rE, rY1 , ..., rYns21 , r1E1 , ..., rns21Ens21 , P)T.
bolic equations, written in conservative form. Without the(27)
chemical source term, it can be accurately simulated by
many well developed schemes. The remainder of the equa-Since both A and B are of the form of a generic matrix
tions, (25), is given in a non-conservative form. A numeri-M defined by
cal implementation of this equation into existing conserva-
tive, shock-capturing schemes, in particular the Godunov-M 5 aA 1 bB,
type method, is provided in this section. For the proper
treatment of the chemical source term, a splitting methodit is convenient to describe the eigenvalues and eigenvec-
with an enforcement of the reaction temperature is alsotors in terms of a and b. The eigenvalues for M are found
presented. The resulting scheme conserves mass, momen-to be
tum, and energy of the mixture. The scheme also is numeri-
cally and thermodynamically consistent. The descriptionl(1) 5 (au 1 bv) 2 ĉÏa2 1 b2

of the numerical method is presented in the following.
l(2) 5 ? ? ? 5 l(2ns12) 5 (au 1 bv) (28) Let Uj represent a vector of (2ns 1 d) components con-

taining the conservative variables for cell j. In two dimen-l(2ns13) 5 (au 1 bv) 1 ĉÏa2 1 b2,
sions the vector takes the form:

with the effective speed of sound defined as
U 5 (r, ru, rv, rE, rY1 , ..., rYns21 , r1E1 , ..., rns21Ens21)T.

ĉ 5
P

!r Ons

i51
(Pi/ci)

. (29)
We denote U2

j11/2 and U1
j11/2 as the states of the fluid just

to the left and right of the cell interface j 1 As respectively.
For first-order solutions, U is considered as piecewise con-
stant over each cell. For higher order solutions, a recon-Table I presents the matrix L which has the jth column as
struction procedure is performed for each cell in order tothe right eigenvector r( j) of M. The L21 is given in Table
generate higher order spatial approximations. In this study,II where the jth row of L21 is the left eigenvector l( j). The
we use the ENO reconstruction technique from [12]; infollowing nomenclature is used in the tables:
addition, we also make a modification to this scheme to
prevent oscillations resulting from high order polynomials

k1 5
a

Ïa2 1 b2
, k2 5

b

Ïa2 1 b2
, H 5 E 1

P
r

, which interpolate across multiple discontinuities. In re-
gions away from extreme points, the modification ensures
that the values of interpolating polynomials at cell inter-Ĥi 5

riEi

r
1

Piĉ2

ciP
, û 5 k1u 1 k2v, v̂ 5 k2u 2 k1v.

faces will be bounded by the cell average values on each
side of the interface. The details will be presented else-
where. Hence, for high order solutions, we apply the recon-The eigenvalues are real and the eigenvectors are indepen-

dent; hence, the degenerated system is still hyperbolic. struction to characteristic variables from the system of
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TABLE II

Matrix L21 (Left Eigenvectors of Jacobian Matrix M)

0 0 ... 0 0 ... 0
û
2ĉ

2
k1

2ĉ
2

k1

2ĉ
1

2ĉ2

1 0 0 0 0 ... 0 0 ... 0
21
ĉ2

2v̂ k2 2k1 0 0 ... 0 0 ... 0 0

2u 2v 1 0 ... 0 0 ... 0
u2 1 v2

2
u2 1 v2

2ĉ2 2
H
ĉ2

2Y1 0 0 0 1 ... 0 0 ... 0 0
... ... ... ... ... ... ... ... ... ... ...

2Yns21 0 0 0 0 ... 1 0 ... 0 0

Y1û2 2Y1ûk1 2Y1ûk2 0 0 ... 0 1 ... 0 2
Ĥ1

ĉ2

... ... ... ... ... ... ... ... ... ... ...

Yns21û2 2Yns21ûk1 2Yns21ûk2 0 0 ... 0 0 ... 1 2
Ĥns21

ĉ2

0 0 ... 0 0 ... 02
û
2ĉ

k1

2ĉ
k2

2ĉ
1

2ĉ2

equations in (26). As noted in the previous section, we use interface. The species mass fractions are determined by
the approach given in [17] asthe vector V (Eq. (27)) instead of U for simplifying the

derivation of the Jacobian matrices. The characteristic vari-
ables of V are defined as

Y*i 5HY 2
i if u*n . 0

Y 1
i otherwise;

(30)w(k) 5 l(k)V k 5 1, ..., 2ns 1 3,

where l(k) is the left eigenvector of M associated with l(k).
Then, the physical values can be obtained from the trans- it was shown in [17] that this condition would preserve the
formation positivity of the mass fractions. Similarly, the tangential

velocity is determined by

V 5 O2ns13

k51
w(k)r(k),

u*t 5 u2
t if u*n . 0,

where r(k) is the right eigenvector. We perform this recon- u*t 5 u1
t otherwise.

struction procedure in each spatial direction separately.
The eigenvectors are evaluated at the cell in which the
reconstruction is performed. Once the values of U2 and Since from the pressure equilibrium condition we have
U1 are obtained to the desired order of accuracy, the state
of the fluid at each cell interface, U*, is determined from
the solution to the Riemann problem composed of left and

f 2
i 5

P2
i

P2
, f 1

i 5
P1

i

P1
, Pi 5 fiP,right states, U2 and U1. The original Godunov method

[10] is based on the exact solution of the Riemann problem;
however, approximate Riemann solvers are often used in

the partial pressure for species i can be obtained bypractice. We use the approach given in [5] in this paper.
We emphasize here that the Riemann problem only needs
to be solved once for the mixture of the fluid at each cell
interface; species properties are then derived from the
direction of propagation of the contact discontinuity. The
procedure is given in the following. P*i 55

P2
i P*
P2

if u*n . 0

P1
i P*
P1

otherwise.

(31)
Given U2 and U1, a Riemann solver yields the mixture

density r*, pressure P*, and normal velocity u*n at the cell
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The temperature for each species i is calculated from the
ideal gas law as

2
1

Dyi, j3D(riEiv) 1 Yiv DP 11 Pi

ci Ons

i51

Pi

ci
2 P Dv4

y

,

T*i 5
P*i Wi

r*Y*i Ru

.

k 5 (ns 1 2 1 d), ..., (2ns 1 d), (35)

Then c*i is calculated at T 5 T*i . The energy for each
where [ ]x and [ ]y denote that operators perform respec-species i at the cell interfaces is calculated from (4) and
tively in the x- and y-directions, and the single subscript ithe mixture energy is the summation of all species energy.
refers to the ith species. This discretization is consistentNext, we describe the procedure to advance the solution
in the sense that it reduces to (34) for a single fluid; hence,in time. We first consider the no-reaction case. The equa-
the overall method is consistent. We emphasize here thattions for the first (ns 1 1 1 d) components of U, i.e.,
information from (35) is only used to obtain the mixture(12)–(15) with ġi 5 0, in two dimensions can be written as:
ratio of specific heats. Even though (35) is not in conserva-
tive form, the overall scheme can be considered conserva-U(k)

t 1 F(k)(U)x 1 G(k)(U)y 5 0 k 5 1, ..., (ns 1 1 1 d).
tive since it conserves the mixture mass, momentum, and

(32)
energy, as well as the mass for each component.

The time discretization for (33) and (35) can be per-
The semi-discrete form of the Godunov-type method is formed using the forward Euler equation if only first-order

accurate solutions are desired. A Lax–Wendroff-type time
discretization based on the Taylor series expansion for the­U(k)

i, j

­t
5 2

1
Dxi, j

[F(k)(U*(xi11/2, j , t)) 2 F(k)(U*(xi21/2, j , t))]
conservative variables can be used to obtain second-order
accurate solutions. First we calculate the values of U2 and

2
1

Dyi, j
[G(k)(U*(yi, j11/2 , t)) 2 G(k)(U*(yi, j21/2 , t))] U1 at time tn11/2 as

k 5 1, ..., (ns 1 1 1 d), (33)
U6(tn11/2) 5 U6(tn) 2

Dt
2 FA

­U
­x

1 B
­U
­yG6

,
where U is the cell average of U. The remaining compo-
nents of U are the energies of each species i for 1 # i #

where all the values on the right-hand side are obtained(ns 2 1). They are given by (25) in a nonconservative form.
from the high-order (two or higher) reconstruction step;In order to discretize this equation, we first examine the
thus, the spatial accuracy is not restricted to second order.semidiscrete form of the mixture energy equation. Follow-
The Riemann solvers are then performed. For even highering (33) and restricting our attention to the x-direction,
orders of temporal accuracy, the method of lines is recom-the semidiscrete form for (14) is written as
mended, especially for multidimensional systems of equa-
tions.

For multidimensions, the reconstruction procedure is
­(rE)i, j

­t
5 2

1
Dxi, j

[D(rEu) 1 u DP 1 P Du], (34)
applied to each spatial direction separately while keeping
all other variables fixed. Thus, the method in multidimen-

where Da 5 ai11/2, j 2 ai21/2, j and sions is at most second order accurate in space. For higher
orders of spatial accuracy in multidimensions, methods in
[4] and [24] can be used.a 5

ai11/2, j 1 ai21/2, j

2
.

For chemically reacting flows, we use splitting methods
in which the chemistry is separated from the fluid motion,

We also have thus freeing the fluid terms from the restricted time scale
imposed by the chemical reactions. The first fractional step

D(ab) 5 a Db 1 b Da. solves the nonreactive flows by using the method presented
above. The chemistry is then solved in the second step.

Thus, Eq. (25) is discretized as Conservation of total mass implies

dYi

dt
5

ġi

r
for i 5 1, ..., ns, (36)­U(k)

i, j

­t
5 2

1
Dxi, j3D(riEiu) 1 Yiu DP 11 Pi

ci Ons

i51

Pi

ci
2 P Du4

x

where the right-hand side depends on species mass frac-
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tions as well as on temperature. In addition, the total inter-
nal energy does not change. From the expression of specific
internal energy for ideal gases

e 5 Ons

i51
Yihi 2 Ru Ons

i51
SYiTi

Wi
D ,

we differentiate with respect to time with e being a con-
FIG. 3. Schematic of a subcell resolution for a fluid convection step.stant. After substituting

dhi

dt
5 cp,i

dTi

dt within a large grid cell as shown in Fig. 3. During the
second fractional step, only the unburnt gas region behind
the shock can be burnt, consistent with the Zel’dovich,

and using (36), we then have von Neumann, and Doring (ZND) model. But the mixture
temperature for this cell can be high enough that both the
post- and the pre-shock unburnt gas regions are completely
burnt. This causes the shock to move at an incorrect speed.r Ons

i51
Scp,i 2

Ru

Wi
D Yi

dTi

dt
5 Ons

i51
STiRu

Wi
2 hiD ġi .

Hence, at the reaction front, the reaction temperature has
to be the temperature of the post-shock unburnt gas. To
enforce this criterion, we first locate the reaction front; its

For the reaction purposes, it is presumed that within a grid location is approximately at the position where the unburnt
cell all species coexist at the same temperature. Then the mass fraction, Yu , is 0.5. Within each grid cell, the present
equation for the mixture temperature is scheme also provides the mixture temperature as well as

the temperatures for each species. Thus, the reaction tem-
perature is taken to be

dT
dt

5

Ons

i51
STRu

Wi
2 hiD ġi

r Ons

i51
Scp,i 2

Ru

Wi
D Yi

. (37)
T 5HT̃u if Yu $ 0.5

T̃mixture otherwise,
(38)

where T̃u and T̃mixture are obtained from the first frac-
Hence, we update species mass fractions due to chemical tional step.
reactions by integrating (36) and (37) from time t 5 n to
t 5 n 1 Dt. The energy for each species is then updated
by using the new temperature and species mass fraction. 5. NUMERICAL RESULTS
Within each cell species energy can be created or destroyed
due to chemical reactions, but the total energy is conserved. In this section we present results of several test problems

in one and two space dimensions: a convection of a contactTo obtain second order accuracy, either the Strang splitting
[23] or the alternate switching of the fractional steps as discontinuity, a shock tube with two species, a Chapman–

Jouguet detonation wave, and an interaction of a shockshown in [6] can be implemented. For most applications,
it is adequate to solve only (36) for Yi using a fixed value wave with a cold helium cylinder. Solutions for first and

higher order accurate methods are presented. We chooseof the mixture temperature determined from the first frac-
tional step. But additional care must be taken when simu- fourth order spatially accurate solutions as a representation

of higher order solutions. The Lax–Wendroff–type timelating stiff detonation waves.
To simulate stiff detonation waves, further restrictions discretization is used; hence, second order temporal accu-

racy is obtained. In most of the following figures, we useon the burning rate must be applied in order to obtain
correct physical results; an example is a fix presented by plus (1) symbols to represent numerical solutions obtained

from the thermodynamically consistent method presentedEngquist and Sjogreen in [9]. In the following we describe
an alternative criterion. After the first fractional step, it is here; solid lines are exact solutions. Comparisons with

other methods are included. Solutions obtained from nu-possible that both the flame and shock fronts are co-located
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FIG. 4. Comparison of the thermodynamically consistent versus inconsistent numerical methods. Shown are first-order accurate solutions for
the convection of a contact discontinuity at t 5 0.5 with CFL 5 0.8. (Solid lines, exact solutions; ‘‘1’’, consistent method; dashed lines, inconsistent
method with c calculated from Eq. (10); dotted lines, inconsistent method with c calculated from Eq. (11).)

merical methods which solve the Euler equations written the gases are given in the example presented in Section
2. The initial conditions (non-dimensionalized) arefor the mixture and mass conservation equations for each

species with c calculated from (10) and (11) are presented
(r, c, Y1 , Y2) 5 (1, 1.4, 1, 0) x , 20.25

(39)
as dashed and dotted lines respectively. These methods
are referred to here as thermodynamically inconsistent

(r, c, Y1 , Y2) 5 (0.5, 1.667, 0, 1) x $ 20.25,methods, and the test problems are chosen so that the
methods have difficulties in multispecies computations. All

where x varies from 20.5 to 0.5. We use 100 cells in thethese simulations are computed from a two-dimensional
calculations. Figure 4 shows a comparison of the resultscode.
from the three different methods, as well as the exact
solution, at time t 5 0.5, with CFL 5 0.8. For direct compar-

5.1. Convection of a Contact Discontinuity
isons, first order accurate solutions are presented. The ex-
act solution has a contact discontinuity at x 5 0.25, andWe examine the convection of a contact discontinuity

which separates air (species 1) and helium (species 2). The pressure and velocity remain exactly at unity. For the solu-
tions obtained from the thermodynamically inconsistentpressure and normal velocity are unity. The properties of
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FIG. 5. Comparison of the thermodynamically consistent versus inconsistent numerical methods. Shown are fourth-order spatial with second-
order temporal accurate solutions for the convection of a contact discontinuity at t 5 0.5 with CFL 5 0.8. (Solid lines, exact solutions; ‘‘1’’, consistent
method; dashed lines, inconsistent method with c calculated from Eq. (10); dotted lines, inconsistent method with c calculated from Eq. (11).)

methods (dashed and dotted lines), there are over- and time for the consistent method is 15% higher than that of
the inconsistent methods.under-shoots in the pressure field with the peaks located

near the initial location of the contact discontinuity. These Solutions computed by the fourth order accurate in space
and second order accurate in time method are presentednumerical errors propagate throughout the region and also

contaminate the density and velocity fields. There are also in Fig. 5. The discontinuity is better resolved. Even though
the solutions show some improvement in resolving theerroneous steps across the discontinuity in the velocity

profiles. The speeds of the discontinuity are also under- magnitude of variables across the discontinuity, the numer-
ical spikes resulting from using (10) or (11) still persist.and over-predicted, as can be seen from the density plot.

For the consistent method, the results are in excellent High order accurate solutions of the consistent method
encounter no numerical difficulty.agreement with the exact solution. The pressure and veloc-

ity remain in equilibrium. The speed of the contact discon-
tinuity and the jump in density are correctly predicted.

5.2. Shock Tube with Two Species
Since c is not a conserved property, it is not expected to
be symmetric about the discontinuity. Other models for c The next test problem is a shock tube, open at both

ends, initially with a diaphragm separating air (species 1)give over- and under-estimated values. The computational
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FIG. 6. Comparison of the thermodynamically consistent versus inconsistent numerical methods. Shown are first-order accurate solutions for
the two species shock tube at t 5 0.33 with CFL 5 0.8 (solid lines, exact solutions; ‘‘1’’, consistent method; dashed lines, inconsistent method with
c calculated from Eq. (10); dotted lines, inconsistent method with c calculated from Eq. (11)).

to the left and helium (species 2) to the right. The initial shown in the figure. It is clear that the inconsistent methods
have difficulties resolving the contact discontinuity. Theredata (nondimensionalized) are
is an erroneous dip in the density profile across the
contact discontinuity for the inconsistent method with c(r, P, u, c, Y1 , Y2) 5 (1, 1, 0, 1.4, 1, 0) x , 0
calculated from (10). The pressure and velocity in the

(r, P, u, c, Y1 , Y2) 5 (0.8, 0.2, 0, 1.667, 0, 1) x $ 0, enlarged region of the contact discontinuity are shown
in the figure. Across the contact discontinuity, i.e., x 5(40)
0.15, both of the inconsistent methods over-predict the
pressure by 2% and 1%, respectively. There is also awhere x varies from 20.5 to 0.5. This set of initial data is
nonphysical step in the velocity profile at the locationchosen so that there is a large jump in temperature across
of the contact discontinuity for these methods. The resultsthe contact discontinuity after the passage of the shock
from the consistent method show good agreement withwave. Thus, errors committed at the discontinuity can be
the analytical solution.easily visualized. We use 100 cells with a uniform spacing

Solutions computed by the fourth order accurate in spacein the simulation. Figure 6 shows the comparisons of the
and second order accurate in time method are presentedresults from the three different methods and the exact
in Fig. 7. For each case the contact discontinuity is bettersolution at time t 5 0.33 with CFL 5 0.8. The exact solution
resolved; the erroneous step in the velocity profile is im-has a contact discontinuity and a shock at x 5 0.150 and

x 5 0.336, respectively. First order accurate solutions are proved. Even though the errors are smaller, they are not



SHOCK-CAPTURING METHODS FOR NONEQUILIBRIUM FLOWS 249

FIG. 7. Comparison of the thermodynamically consistent versus inconsistent numerical methods. Shown are fourth-order spatial with second-
order temporal accurate solutions for the two species shock tube at t 5 0.33 with CFL 5 0.8 (solid lines, exact solutions; ‘‘1’’, consistent method;
dashed lines, inconsistent method with c calculated from Eq. (10); dotted lines, inconsistent method with c calculated from Eq. (11)).

completely eliminated. The high order accurate solutions ġ1 5 2KrY1H(T 2 Tc),
obtained from the consistent method show excellent
agreement with the exact solution. The method has also where Tc is the critical temperature and the Heavyside
been applied to test problems in [1, 15, and 17]. The results function H(T) takes the form
agree well with analytical solutions. These results are not
shown here since they exhibit behavior similar to this
test problem. H(T) 5H1 T . Tc

0 otherwise.
(41)

5.3. Chapman–Jouguet Detonation Wave

A stiff Chapman–Jouguet (C-J) detonation wave is sim- The constants are given as
ulated in this section. We simulate ozone decomposition;
the data are taken from [6]. Both unburned (species 1) Tc 5 500 K, K 5 5.825 3 109 sec21,
and burned (species 2) gases are perfect gases with a con-

h0
f,1 5 5.196 3 109 dynes–cm/g.stant ratio of specific heats of 1.4. A one-step, irreversible

reaction is assumed; a simplified Arrhenius model is used
where the reaction rate is a step function depending on For certain values of the wave propagation speed and acti-

vation energy, the flowfield can be unsteady where thetemperature. The mass production rate thus becomes
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ence length xref , pressure Pref , density rref , and molecular
weight Wref . Thus, specific energy, temperature, velocities,
and time are normalized respectively by

Eref 5
Pref

rref
, Tref 5

Pref Wref

rref Ru
,

uref 5 !Pref

rref
, tref 5

xref

!Pref

rref

.

The reference pressure and density are taken to be the
respective values of the unburned gas. The grid size is
chosen as the reference length. The computed C-J initial
states for the burned gas, in dimensionless form, are

r 5 1.619, P 5 7.535, u 5 1.581,FIG. 8. Comparison of the splitting methods with and without the
enforcement for the reaction temperature. Shown are solutions with a
fine mesh for the Chapman–Jouguet detonation wave; xref 5 5 3 1026 and the normalized speed of the C-J detonation wave is
cm, t 5 2.419 3 102, CFL 5 0.8 (Solid lines, with the enforcement of 4.133.
Eq. (38); dashed lines, without (38).) The initial conditions have the C-J states defined for

x , 0. We use 100 cells in all the simulations. To follow
the moving wave, we allow the solution to run until the

flow can be oscillating in a periodic or irregular manner.
wave comes within a fixed distance from the center of the

Through numerical experiments, the C-J deontation wave
grid; then a fixed number of cells is added to the right

is found to be stable with the reaction rate defined as above.
while the same number of cells is eliminated at the left.

The initial states for the unburned gas are
First, we perform a simulation using an extremely fine
mesh with xref 5 5 3 1026 cm. There are roughly 10 points

r 5 1.201 3 1023 g/cm3,
in the reaction zone. Figure 8 displays the results for the
pressure field at time t 5 2.419 3 102 with CFL 5 0.8.P 5 8.321 3 105 dynes/cm2, u 5 0.
The solid line repesents the solutions obtained from the
splitting method with the enforcement of Eq. (38), whileHere, we will express all variables in terms of some refer-

FIG. 9. Comparison of the splitting methods with and without the enforcement for the reaction temperature. Shown are solutions with a coarse
mesh for the Chapman–Jouguet detonation wave; xref 5 5 3 1024 cm, t 5 24.193 and 2.419 3 102 respectively, with CFL 5 0.8 (solid lines, with
the enforcement of Eq. (38); dashed lines, without (38)).
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interacts with an interface separating lighter gas from heav-
ier gas. Experiments in [13] verified mixing enhancement
in this problem. Numerical studies for the mixing enhance-
ment problem have been performed in [8, 26, and 28]. In
these studies, the embedded gas and its surrounding initially
have the same temperature; whereas, for realistic engi-
neering applications, the gas inhomogeneities usually have
temperature different from the surroundings. A typical ex-
ample is the injection of fuel jets into a hot stream. Thus,
our objectives in this section are: (1) to show that numerical
difficulties can arise in resolving material interfaces in realis-
tic flow environments and (2) to demonstrate the accuracy
of the current approach in simulating such flows.

We examine the interaction of a shock wave with a
cold helium cylinder. Initially the helium region and the
surrounding air have the same pressure, but the tempera-
ture of the helium region is equal to half of the surrounding

FIG. 10. Comparison of the splitting methods with and without the air temperature. This cylindrical region has a unit radius,
enforcement for the reaction temperature. Shown are high-order accurate

and its center is located at x 5 2. An incident shock wave,solutions with a coarse mesh for the Chapman–Jouguet detonation wave;
initially located at x 5 0.5, travels from left to right atxref 5 5 3 1024 cm, t 5 24.193, CFL 5 0.8 (solid lines, with the enforcement

of Eq. (38); dashed lines, without (38)). Mach 1.093. The computational domain is a rectangular
region with a uniform grid of 100 3 50 cells; the grid
spacing is Dx 5 Dy 5 0.05. To represent initially a cylinder
on a Cartesian grid, for cells that contain the boundary of

the dashed line represents the solutions obtained without the cylinder, we interpolate the conservative values based
(38). The reaction zone with the ZND profile is correctly on the cell volume fraction. While a second order accurate
resolved by either method. The exact solution of the C-J scheme is applied to time evolution, a fourth order accurate
wave has a shock front at x 5 1000. Both methods slightly reconstruction procedure is used in each spatial direction.
under-predict the location of the wave. This error is caused This is done to obtain a high resolution solution, even
by the approximation of the initial wave without the though the formal accuracy of the method is second order.
ZND profile. To further achieve higher resolution at the material inter-

Next we increase the grid size by two orders of magni- faces, the local adaptive mesh refinement technique in [3]
tude greater than those above, hence xref 5 5 3 1024 cm. is employed. Two levels of grids with a refinement factor
The first order accurate solutions at time t 5 24.193 and of four are used. The lower half-plane is symmetric with
2.419 3 102 are respectively shown in Fig. 9. The method respect to the upper half-plane, hence only the upper half
without the enforcement of (38) gives nonphysical results; of the system is simulated. The bottom boundary condition
these are similar to the results obtained in [6]. The correct is the line of symmetry. At other boundaries, all gradients
solutions of the detonation wave are obtained by the pres- are set to zero to allow waves to propagate naturally out
ent method. Similar behavior is obtained for solutions com- of the computational domain.
puted by the fourth order accurate in space and second Figure 11 displays contour plots for the air mass frac-
order accurate in time method; they are presented in tions. Solutions obtained by the thermodynamically consis-
Fig. 10. tent and inconsistent methods are shown at time t 5 7.5.

At this time, the shock has already propagated out of
the computational domain. As the incident shock passes

5.4. Interaction of a Shock Wave with a
through at earlier times, it deposits vorticity on the jet

Cold Helium Cylinder
interface at a rate proportional to (=p 3 =r). Hence, the
vorticity has a counterclockwise direction for the upperStudies of the transmission and reflection of a weak

shock wave from cylindrical and spherical gas inhomogene- half-plane. This causes the upstream air to turn downward
and form a high velocity re-entrant airstream along theities were investigated experimentally in [22] and later in

[11]. The latter experiment has been simulated in [21]. The centerline. As time passes, the upstream face of the cylin-
der continues to deform into a kidney-shaped structure.concept of shock-induced enhancement of mixing was first

proposed in [19] for its potential application to scramjet The consistent method encounters no difficulty in resolving
the interface. For the inconsistent method, there are kinkscombustor design. This concept is based on the high degree

of vorticity generation that can arise when a shock wave generated by numerical errors along the interface; thus it is
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FIG. 11. Comparison of the thermodynamically consistent versus inconsistent numerical methods. Shown are 30 equally spaced contour lines
for the mass fraction of the interaction of a Mach 1.093 shock wave with a cold helium cylinder embedded in air at t 5 7.5.

clear that the inconsistent method has difficulties resolving reacting flows, an enforcement of the reaction temperature
that depends on the temperatures of each species is intro-contact surfaces separating gases with different ratios of

specific heats and temperature. duced to eliminate the nonphysical waves generated by
stiff reaction fronts.

6. SUMMARY
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